The composition of this exotic, aged tea gives it a special ability to help prevent weight gain By Will Block
besity is not for sissies. It’s tough being obese, and the long-term prospects are not good. The word conjures up images of the fat we can see and feel: the pudgy cheeks, the flabby arms, the stout legs, and, especially, the midriff bulge—those pinchable inches of fat that can make our bellies look “like a bowlful of jelly.” But leave the jelly-belly to St. Nick. For the rest of us, the fat it contains is the most harmful to our health. It’s not so much the fat we can see and feel there, but the hidden fat beneath—called visceral fat—that we can’t see or feel.
Excessive fat surrounding the liver, pancreas, kidneys, and other internal organs has been linked to high levels of fat, glucose, and insulin in the blood, and those are reliable predictors of diabetes, heart disease, and other chronic conditions—the unintended and potentially fatal consequences of allowing ourselves to gain too many pounds. Obesity is also associated with increased risks for various cancers, including those of the liver, colon, breast, ovary, and prostate.
It’s Not How Much You Eat, but What You Eat . . .
To reduce our visceral fat, we can reduce our overall fat load through diet and exercise, the twin pillars of good health. We all know what exercise is, but diet is not as easy to define, because there are so many different approaches to this unwelcome subject. The important thing to remember is that diet need not mean a restriction on how much you eat (although that may well be a factor), but rather on what you eat.
Substituting more nutritious foods for excessively fatty or sugary foods is a no-brainer, but another good strategy is to avoid foods with a high glycemic index, concentrating instead on those with a low glycemic index. It’s also possible to reduce the average glycemic index of your meals by using selectively bred beta-glucan-rich barley as a cereal, a beverage, or a substitute for conventional carbohydrates, such as rice and potatoes. By doing so, you will avoid the “spikes” in blood sugar levels that are not only harmful by themselves (they induce the formation of advanced glycation end products, aptly abbreviated AGEs) but that also unleash a chain of bad physiological consequences, including undue weight gain.
. . . And Drink
Furthermore, there are nutritional supplements that can, in conjunction with diet and exercise, help you shed even more pounds, or prevent them from being put on in the first place—especially if the diet in question is a low-glycemic-index diet. One such supplement is tea.
Tea, a supplement? Well, yes, it can be (powdered green tea extracts in capsule form are especially beneficial), but tea as a beverage is delightful and happens to be among the most healthful foods known to man, despite having no protein, carbohydrate, or fat content (hence, zero calories). It’s all about tea’s content of flavonoids, a large class of naturally occurring antioxidant compounds in the much larger class called polyphenols.
Pu-erh—With Age Comes Quality
Last month we featured an unusual kind of tea called Pu-erh (pronounced poo·air), a name that designates both a regional tea varietal and a special processing method. (See “Pu-erh Tea—Exotic, Aged, and Anti-Fat” in the June 2007 issue). For those who haven’t read the article, we’ll summarize the basics here.
Pu-erh is a broadleaf tea varietal (Camellia sinensis var. assamica) that comes from Yunnan province in southwestern China, where there is a town called Pu’er. Virtually all true teas fall into one of the four major kinds of tea—white or green (both unfermented), oolong (partially fermented), and black (fully fermented). Pu-erh is different: although it’s made as a green tea, it’s much better known for being made as a fully fermented tea that’s analogous to black tea. Although the result is a black type of tea, the processing method used is unique to Pu-erh, and the tea is unlike black tea in some ways. Actually, two processing methods are used, one of ancient origin and one of recent invention. Thus there are really three kinds of Pu-erh tea:
Pu-Erh Reduces Rat Fat
In 1986, Japanese researchers published a study on the effects of Pu-erh tea and conventional green tea (in leaf form) on lipid metabolism in rats whose diet contained 1% cholesterol by weight.1 (Lipids are fats and various other fatty substances, such as cholesterol.) Two samples of Pu-erh, aged for 2 years or 20 years, were used. The 20-year-old tea could not have been black Pu-erh, because that kind had been in existence for only 14 years; thus it had to have been aged raw Pu-erh.
Neither the green tea nor the Pu-erh tea had any significant effect on the rats’ body weight, but the Pu-erh group had a significant reduction of adipose tissue (body fat), both in absolute terms and as a percentage of body weight; green tea had no such effect. Furthermore, the plasma levels of triglycerides (fat molecules) were reduced in the Pu-erh group but not in the green tea group. (There were no appreciable differences between the 2-year-old and 20-year-old Pu-erh teas in any measure.) On the other hand, the plasma levels of free fatty acids (the principal constituents of triglycerides) and cholesterol were not changed in any group by the end of the study.
Fatty Acid Synthase—A Key Step on the Way to Fat
In the last few years, a number of papers have been published on the fat-fighting and other properties of teas, including Pu-erh tea; some of these have focused on the teas’ ability to inhibit the action of fatty acid synthase (FAS), an enzyme complex that plays a key role in our bodies’ production of fatty acids, the precursors of fat
What FAS actually does is catalyze the production of a particular fatty acid, palmitic acid, from compounds called acetyl-coenzyme A and malonyl-coenzyme A, which are derived from the foods we eat via complex chemical reaction sequences. Other fatty acids are then produced from palmitic acid by the catalytic action of other enzymes.
Our bodies use these fatty acids (along with those from the digestion of fat in our food) in three main ways: (1) some are used for the synthesis of other compounds, such as the phospholipids in our cell membranes; (2) some are used as cellular fuel by various tissues; and (3) some are converted, by the action of enzymes called phosphatases, to fat molecules (triglycerides) for energy storage. Where the balance lies among these three uses depends on many factors that interact in complex ways.
FAS Is an Inviting Target
FAS levels are regulated by diet and hormones and are found to be elevated in a wide variety of human cancers, including cancer of the prostate, breast, endometrium (the uterine lining), ovary, lung, colon, stomach, and thyroid. Because of FAS’s connection with both obesity and cancer, it presents an inviting target for biochemical intervention, in the same way that one of the enzymes involved in the biosynthesis of cholesterol is the target of statin drugs, which restrict the overall process by inhibiting that enzyme. (It’s interesting to note, by the way, that trace amounts of natural lovastatin have been found in some samples of Pu-erh tea.4)
In 1972 it was discovered that the synthetic antibiotic cerulenin was a FAS inhibitor; this led, in the 1990s, to investigations of FAS inhibition as a means of cancer chemotherapy.5 Only in this century, however, have scientists been looking for agents that could inhibit FAS—and, therefore, lipogenesis (the production of fat)—for the purpose of combating obesity. One such agent of current interest is Pu-erh tea, which contains chemical compounds not found in conventional teas. Let’s digress for a moment to talk about these compounds.
What Tea Is Made of
White tea and green tea are rich in a type of flavonoid called catechins. The catechins—especially one called epigallocatechin gallate (EGCG)—are noted for their protective effects against heart disease and cancer. In conjunction with two other tea components, caffeine and the rare amino acid theanine, they are also credited with antiobesity and antilipidemic (lipid-reducing) actions.*
*One often hears that adding milk to tea, as the British like to do, effectively destroys the tea’s health benefits, because the catechins bind to milk proteins and are thus inactivated. That’s true in cell-culture experiments, but not in human beings, because our digestive systems break down the proteins and set the catechins free.
When tea leaves are allowed to ferment to black tea, however, most of the catechins are destroyed in chemical reactions that convert them to other compounds, mainly theaflavins and thearubigins (which are actually catechin polymers). These flavonoids have considerable biological activity of their own, but they’re not as potent as the catechins.†
†For more on the health benefits of black tea, see “Theanine May Help You Fight Off Disease” (July 2003) and “Tea Extract Helps Reduce Cholesterol Levels” (December 2003).
Most Pu-erh tea, being of a black nature, has almost no catechin content—it has even less than conventional black tea—which makes it different from green teas (including, of course, green Pu-erh). It also, however, has almost no theaflavins or thearubigins, which makes it different from conventional black teas.6 Pu-erh does, however, have caffeine and theanine—which are not destroyed in the fermentation process—as well as a variety of compounds not found in conventional teas of any color.7 These compounds are formed during the aging process by the actions of various fungi (especially one called Aspergillus niger), and scientists believe they are probably responsible for some of Pu-erh’s health benefits. Which brings us back to the inhibition of fatty acid synthase and, therefore, of lipogenesis.
Pu-erh Reduces Weight Gain and Fat, Perhaps by Inhibiting FAS
In Taiwan, researchers studied the effects of feeding four kinds of tea—green, oolong, black, and Pu-erh (of unspecified type, but it was certainly either aged raw or black)—to young rats.8‡ They found that all four teas suppressed the test rats’ body-weight gains compared with those of the control rats; in descending order of efficacy, the teas were Pu-erh, oolong, black, and green. Surprisingly, despite the weight losses, there were no significant differences in total food intake among the test and control groups of rats. In addition, Pu-erh and oolong significantly lowered triglyceride levels, whereas green and black did not. All four lowered total cholesterol levels, and here Pu-erh was the least effective.
‡The carelessly prepared paper was marred by a number of substantive errors and contradictions.
Based on these and other findings, the researchers surmised that the teas’ action was probably due to an inhibition of FAS, mainly by compounds resulting from fermentation processes. To pursue this idea, they investigated the teas’ actions on FAS in cultures of human liver cancer cells.9 They found that all four teas were active in inhibiting FAS, but Pu-erh was the most effective, probably owing to the compounds that are unique to that type of tea. The results of this study are in accord with numerous others showing that polyphenols of many kinds, including flavonoids and nonflavonoids, are FAS inhibitors and thus have potential for fighting both obesity and cancer.2
Pu-erh Shows Strong Antioxidant Activity
It has been said that black tea, generally speaking, has only about one-sixth the antioxidant power of green tea, owing mainly to the former’s low levels of catechins. That may be true in some cases, but not all—it depends on what kind of antioxidant activity you’re measuring, and how you’re measuring it. As evidence of this, Taiwanese researchers recently published a laboratory study using four types of tea: green, oolong, black, and Pu-erh (the last of these was probably black Pu-erh, although this was not specified).10
In the particular experiments they were conducting, the researchers found that all four teas had nearly identical levels of antioxidant activity. That’s remarkable, considering the fact that the polyphenolic compositions of these teas are dramatically different. It suggests that, as the strongly antioxidant catechins in green tea are destroyed by the fermentation reactions leading to oolong, black, and Pu-erh teas, there is a compensatory gain in antioxidant activity from the new compounds produced.
Thus it appears that all teas can provide health benefits deriving from antioxidant activity—as is suggested, in fact, by much scientific evidence—but the particular benefits will depend on various factors, including the kind of tea in question.6
The SARS Connection
Among the unexpected potential health benefits of tea is its apparent ability (in the laboratory) to counteract the virus responsible for SARS (severe acute respiratory syndrome), the disease that became big news in November 2002 when the first, and so far only, major outbreak occurred in China and quickly spread around the world, only to fizzle out in 8 months. The virus produces a protein-destroying enzyme called 3CLPro, the inhibition of which would be a means of attacking the disease.
Researchers in Taiwan discovered that extracts of Pu-erh and black teas, but not green or oolong teas, were effective inhibitors of this deleterious enzyme.11 They identified three compounds found in fully fermented teas—tannic acid, theaflavin-3’-gallate, and theaflavin-3,3’-digallate—as being particularly effective 3CLPro inhibitors. Even so, let’s hope that SARS does not arise again.
Tea for Toughness
At the beginning of this article, we said that obesity is not for sissies. Considering that Pu-erh tea may help combat the fat that leads to obesity, it’s unfortunate that tea is viewed, in some quarters of our coffee-oriented society, as a beverage for sissies. Those folks probably haven’t tried earthy-tasting Pu-erh tea or considered the prospect that Pu-erh might help them slim down and tighten up, making them even tougher than they already are. Pu-erh—not for sissies!
References
|
0 comments:
Post a Comment
I'd love to hear your comments, do share your thoughts with me...